Blood oxygenation level-dependent visualization of synaptic relay stations of sensory pathways along the neuroaxis in response to graded sensory stimulation of a limb.

نویسندگان

  • Johan Lilja
  • Toshiki Endo
  • Christoph Hofstetter
  • Eric Westman
  • Jeremy Young
  • Lars Olson
  • Christian Spenger
چکیده

Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to test at which levels of the neuroaxis signals are elicited when different modalities of sensory information from the limbs ascend to cortex cerebri. We applied graded electric stimuli to the rat hindlimbs and used echo-planar imaging to monitor activity changes in the lumbar spinal cord and medulla oblongata, where primary afferents of painful and nonpainful sensation synapse, respectively. BOLD signals were detected in ipsilateral lumbar spinal cord gray matter using sufficiently strong stimuli. Using stimuli well below the threshold needed for signals to be elicited in the spinal cord, we found BOLD responses in dorsal medulla oblongata. The distribution of these signals is compatible with the neuroanatomy of the respective synaptic relay stations of the corresponding sensory pathways. Hence, the sensory pathways conducting painful and nonpainful information were successfully distinguished. The fMRI signals in the spinal cord were markedly decreased by morphine, and these effects were counteracted by naloxone. We conclude that fMRI can be used as a reliable and valid method to monitor neuronal activity in the rat spinal cord and medulla oblongata in response to sensory stimuli. Previously, we also documented BOLD signals from thalamus and cortex. Thus, BOLD responses can be elicited at all principal synaptic relay stations along the neuroaxis from lumbar spinal cord to sensory cortex. Rat spinal cord fMRI should become a useful tool in experimental spinal cord injury and pain research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

Effect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats

Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

بررسی تاثیر تحریکات حس سطحی و عمقی بر فعالیت های روزمره زندگی و عملکرد حرکتی اندام فوقانی بیماران سکته مغزی

Background: Sensory defects are one of the common complications of stroke. Various studies have reported the prevalence of these deficits in stroke patients between 11 and 85%. These defects in the upper limb of the hemiplegic vary from the lack of primary senses to more complex perceptions, and they reduce the use of the affected limb. Weakness in fine motor manipulation of objects, weakness i...

متن کامل

CEREBRAL BLOOD FLOW REGULATION IN ANESTHETIZED MORPHINE DEPENDENT RATS: THE ROLE OF THE ADENOSINE SYSTEM

Adenosine has many of the characteristics of a regulator of cerebral blood flow and adenosine receptors change in morphine dependency. In this study the changes in adenosine receptors' responsiveness of pial vessels in the hind limb area of the sensory cortex were evaluated in morphine dependent rats (MDR) using the laser Doppler flowmetry technique. Adult male Sprague Dawley rats (250-350 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 23  شماره 

صفحات  -

تاریخ انتشار 2006